Home » Services » CAE Consulting » Virtual Product Development & Optimization

Next dimension in development process

Analysis of early stage prototype design or improvement of an existing product or production process can be effectively done using virtual product development. This contemporary interdisciplinary approach combining design optimization techniques and finite element analysis is an alternative to classical way of product design which is based on time- and cost-unfavourable testing and expensive trial-and-error processes.

Virtual prototypes cost less to produce and design changes are easier to make then empirical upgrades and modifications of physical prototypes. Nevertheless we realize the significance of  physical testing for virtual simulation. Material tests are essential as a source of data for advanced constitutive laws. Full-scale physical test are needed for validation and calibration of complex computational models.

Typical Optimization Process

Typical optimization process


Typical benefits of the virtual product development and optimization:

  • Shorten the time-to-market
  • Reduced development costs
  • Fast evaluation of problems in early stage of design
  • Replace experimental trial-and-error processes
  • Improved product performance at defined level of reliability and serviceability
  • Reduced production cost

Our consultancy team possesses extensive experience and know-how in setting up advanced parametric FE-models, FE-analysis and evaluation of structures performance and latest design optimization techniques.

Simulation and Optimization Techniques

We offer our customers simulation and optimization techniques, which can be integrated into their current-state product development process:

  • Parametric Modeling
  • Virtual Prototyping
  • Topological Optimization
  • Sensitivity Analysis (shows how the uncertainty in the output of a FE-model can be apportioned to different sources of uncertainty in its inputs)
  • Design Space Exploration
  • Verification and Validation of Computational Model
  • Multi-objective Optimization (reduction of production costs and improvement of performance and reliability, often reduction of production costs while achieving target performance)
  • Parametric Tolerance Analysis of Mechanical Assemblies
  • Model Calibration and Inverse Parameter Identification

Are you tired of trial-and-error simulations or tests?

We will improve performance of your products using state-of-art methods and solution.